Preliminary communication

Two crystalline toluene-soluble 1,2organobis(phenylphosphido)dilithium compounds. The monomeric $1,2-C_6H_4(PPh)_2[Li(TMEDA)]_2$ and the dimeric $[(PhPCH_2CH_2PPh)\{Li(THF)_2\}_2]_2$ *

David M. Anderson, Peter B. Hitchcock, Michael F. Lappert, Wing-Por Leung and Jalal A. Zora

School of Chemistry and Molecular Sciences, University of Sussex, Brighton BN1 9QJ (Great Britain) (Received June 25th, 1987)

Abstract

Treatment of 1,2-C₆H₄(PHPh)₂ with LiBuⁿ in n-C₆H₁₄ and TMEDA (TMEDA = Me₂N[CH₂]₂NMe₂) affords 1,2-C₆H₄(PPh)₂[Li(TMEDA)]₂, which both in the crystal (Li-P 2.58(3) and 2.55(3) Å) and in PhMe solution ($J({}^{31}P^{-7}Li)$ 36 Hz) has a monomeric structure with each Li bound to two equivalent P atoms and each P to two equivalent lithium atoms, and yields $SnR_2[P(Ph)C_6H_4PPh-1,2]$ (crystalline *rac* when R = CH(SiMe₃)₂; *rac* + *meso* when R = Me) on treatment with SnR_2Cl_2 or *rac* + *meso*-1,2-C₆H₄[P(Ph)SiMe₃]₂ on treatment with SiClMe₃. By contrast, 1,2-C₂H₄(PPh)₂[Li(THF)₂]₂ (THF = tetrahydrofuran) is an (LiP)₄-skeletal dimer both in the solid and in PhMe ($J({}^{31}P^{-7}Li)$ 39 and 47 Hz).

Di(organo)phosphidolithium reagents $[\text{Li}(\text{PR}_2)\text{L}_m]_n$ are of structural interest (X-ray data are available for several compounds, the first being reported in 1983) [1,2] and of value as $\overline{\text{PR}}_2$ -transfer reagents to electrophilic sites. Bifunctional compounds have received scant attention, although other compounds of type (LiX)₂Y are of theoretical concern [3]. Nevertheless, some of them are useful synthons: e.g. Li₂(PhPCH₂CH₂PPh) for phosphorus macrocycles (these ligands are obtained without stereoselectivity at the P-centres) [4a], and Li₂[C₆H₄(PPh)₂-1,2] for benzotriphosphole [4b].

We now report the X-ray structure of the crystalline monomeric 1,2- $C_6H_4(PPh)_2[Li(TMEDA)]_2$ (TMEDA = N,N,N',N'-tetramethylethylenediamine) (1) [11 **], which has each lithium atom bound equivalently to two phosphorus

No reprints available

^{**} References numbers with asterisks indicate notes in the list of references.

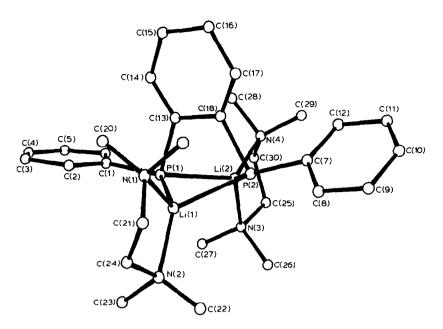
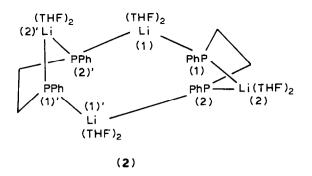
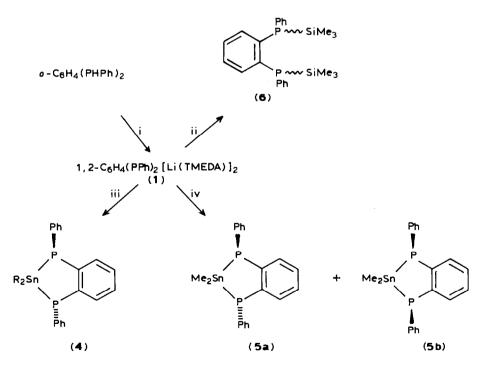


Fig. 1. The molecular structure and atom numbering scheme for $1,2-C_6H_4(PPh)_2[Li(TMEDA)]_2$ (1); for selected data, see Table 1.


atoms. Fig. 1; the two lithium atoms are on opposite sides of the planar 1,2- $C_6H_4P_2$ moiety and the overall configuration of 1 resembles that of 1,2- C_6H_4 (CHSiMe₃)₂[Li(TMEDA)]₂ [5]. This is among the first crystalline monomeric LiP compounds; cf. also 1,2- C_6H_4 (PPh)₂PLi(THF)₃ LiPPh₂(PMDETA) [2b] (PMDETA = [Me₂NCH₂CH₂]₂NMe), whereas [Li(12-crown-4)₂][PPh₂] has well separated ions [6], and [Li(μ -PPh₂)(TMEDA)]₂ is a dimer [2b]. There is a further contrast (Table 1) with the crystalline dimeric Li₄P₄ macrocycle [(PhPCH₂CH₂PPh){Li(THF)₂}₂]₂ (THF = tetrahydrofuran) (2) [7].

From variable temperature ${}^{31}P{}^{1}H$ and ${}^{7}Li{}^{1}H$ NMR data [12 *] we conclude that the structure of 1 in toluene- d_8 solution at low temperature is identical to that


Li-P		Li-P-Li		P-Li-P	
Compound 1					
Li(1) - P(1)	2.58(3)				
Li(2)-P(1)	2.55(3)	Li(1) - P(1) - Li(2)	103.4(9)	P(1)-Li(1)-P(2)	72(1)
Li(1) - P(2)	2.59(3)				
Li(2)-P(2)	2.59(3)	Li(1) - P(2) - Li(1)	102.0(9)	P(1)-Li(2)-P(2)	72(1)
Compound 2 [7]				
Li(1)-P(1)	2.57(1)				
Li(2)-P(1)	2.56(2)	Li(1) - P(1) - Li(2)	138.6(5)	P(1)-Li(1)-P(2)'	113.2(7)
Li(1)-P(2)'	2.57(2)				
Li(2) - P(2)	2.53(2)	Li(1)' - P(2) - Li(2)	128.7(5)	P(1)-Li(2)-P(2)	88.7(5)

Selected bond distances (Å) and angles (°) in compounds 1 and 2

Table 1

in the crystal. Although this situation parallels that found for the di(organo)phosphidolithium compounds $[Li(\mu-PR'_2)]_2$ ($R' = CH(SiMe_3)_2$) [8] and $LiPPh_2(L)$ (L = TMEDA or PMDETA) [2b], the solution structures of compounds $[Li(PR_2)L_m]_n$ are sometimes complicated [9]. Likewise, the NMR data for 2 [12 *] were complex, and at first sight at variance with the structure in the crystal, which shows two types of Li atoms but apparently only one type of P atom. However, closer inspection of a molecular model shows that there are two different P sites, labelled P(1) and P(2) in

Scheme 1. The synthesis and some reactions of $1,2-C_6H_4(PPh)_2[Li(TMEDA)]_2$ (1, R = CH(SiMe₃)₂). Reaction conditions: i: 2LiBuⁿ, 2TMEDA, n-C₆H₁₄, O^oC; ii: 2SiClMe₃, OEt₂, 0^oC; iii: SnCl₂R₂, OEt₂, 25^oC; iv: SnCl₂Me₂, OEt₂, 25^oC. Characterisation of compounds 1-6: satisfactory C and H analyses, and NMR and X-ray (for 1 and 2, Table 1) data.

2, as shown most obviously by the bond angles at these sites: Li(1)-P(1)-Li(2)138.6(5)° and Li(1)'-P(2)-Li(2) 128.7(5)°. At 305 K, compound 2 in toluene- d_8 showed sharp ³¹P{¹H} and ⁷Li{¹H} singlets; but at 193 K, there were two Li signals each showing coupling to two equivalent phosphorus atoms, whereas there were two P signals each probably coupled to 2 Li's (2 broad signals) [12 *]. A plausible explanation of the low temperature solution spectrum is that it is consistent with structure 2, in which Li(1) and Li(2) are not, but Li(1) and Li(1)' are, rapidly exchanging [10a *]; this interpretation is also compatible with the ³¹P and ⁷Li solid state NMR data on 2 [10b *].

The compound $[{Li(TMEDA)}_2{PhPCH}_2CH_2PPh]_n$ (3), obtained from 2 + TMEDA, also showed complicated variable temperature NMR behaviour in THF [12 *]; its sparing solubility in PhMe, its high frequency ⁷Li{¹H} signal, and a comparatively sharp ³¹P{¹H} signal at low temperature are taken as indicative of the presence of a significant proportion of an ionic species.

We suggest that the diphosphidodilithium compounds 1 and 2 have much potential as sources of chelating or bridging 1,2-organobis(phenylphosphido)metal complexes, as illustrated in Scheme 1 for the former by the synthesis of some dialkyltin(IV) (4 and 5) or bis(trimethylsilyl) (6) derivatives, respectively. Diastereoselectivity is achievable when steric effects are substantial; e.g. for $R_2Sn[P(Ph)C_6H_4PPh-o]$ when $R = CH(SiMe_3)_2$ (4) but not when R = Me (*rac* (5a) (ca. 2/3) + *meso* (5b)) (ca. 1/3) (Scheme 1).

Acknowledgements. We thank S.E.R.C. for support, and our colleagues [10 *] for data and discussions.

References

- 1 Cf. E. Hey, P.B. Hitchcock, M.F. Lappert, and A.K. Rai, J. Organomet. Chem., 3 (1987) 1; and refs. therein.
- 2 (a) A. Schmidpeter, G. Burget and W.S. Sheldrick, Chem. Ber., 118 (1985) 3849; (b) R.E. Mulvey, K. Wade, D.R. Armstrong, G.T. Walker, R. Snaith, W. Clegg, and D. Reed, Polyhedron, 6 (1987) 987.
- 3 Cf. W.N. Setzer and P. von R. Schleyer, Adv. Organomet. Chem., 24 (1985) 353.
- 4 (a) M. Ciampolini, N. Nardi, P.L. Orioli, S. Mangani and F. Zanobini, J. Chem. Soc., Dalton Trans., (1985) 1179: and refs. therein; (b) F.G. Mann and A.J.H. Mercer, J. Chem. Soc., Perkin Trans. I, (1972) 1631.
- 5 M.F. Lappert, C.L. Raston, B.W. Skelton, and A.H. White, J. Chem. Soc., Chem. Commun., (1982) 14.
- 6 H. Hope, M.M. Olmstead, X. Xu, and P.P. Power, J. Am. Chem. Soc., 106 (1984) 819.
- 7 P. Brooks, D.C. Craig, M.J. Gallagher, A.D. Rae, and A. Sarroff, J. Organomet. Chem., 323 (1987) C1; D.M. Anderson, P.B. Hitchcock, M.F. Lappert, and I. Moss, Inorg. Chim. Acta, in press.
- 8 P.B. Hitchcock, M.F. Lappert, P.P. Power, and S.J. Smith, J. Chem. Soc., Chem. Commun., (1984) 1669.
- 9 (for R = Ph) I.J. Colquhoun, H.C.E. McFarlane, and W. McFarlane, J. Chem. Soc., Chem. Commun., (1982) 220; R.A. Bartlett, M.M. Olmstead, and P.P. Power, Inorg. Chem., 25 (1986) 1293; A. Zschunke, M. Riemer, K. Kresch, and K. Issleib, Phosphorus and Sulfur, 22 (1985) 349.
- 10 Work in collaboration with A.G. Avent, R.K. Harris, G.A. Lawless, and A. Sabald; (a) 2D NOESY experiments; (b) solid state NMR experiments.
- 11 Crystal data for I: $C_{30}H_{46}N_4Li_2P_2$, M 538.6, monoclinic, space group $P2_1/n$, a 17.246(3), b 10.835(3), c 19.399(3) Å; β 109.22(2)°, U 3422.9 Å³, Z = 4, D_c 1.05 g cm⁻³, Mo- K_{α} radiation, λ 0.71069 Å, μ 1.5 cm⁻¹. The structure of 1 was solved by direct methods and refined by full-matrix least squares to R = 0.13, R' = 0.12, with anisotropic temperature factors for atoms other than

carbon, using 1362 reflections with $|F^2| > \sigma(F^2)$. Atomic coordinates, and bond lengths and angles have been deposited at the Cambridge Crystallographic Data Centre; thermal parameters and structure factors are available from the authors.

12 Selected NMR data (³¹P at 32.4 MHz (δ in ppm rel. to 85% H₃PO₄), ⁷Li at 31.1 MHz (rel. to 5M LiBr), ¹¹⁹Sn at 303 K and 134.3 MHz (rel. to SnMe₄), ¹H at 303 K and 360.1 MHz (rel. to SiMe₄)). 1 (Toluene-d₈): ³¹P{¹H} at 203 K: δ -45.2 (binomial septet, ¹J(³¹P-⁷Li) 35 Hz); ⁷Li{¹H} at 203 K: δ 0.7 (t, ¹J(³¹P-⁷Li) 37 Hz). 2 (Toluene-d₈): ³¹P{¹H} at 303 K, -73.0 (s, w_{1/2} 60 Hz); ³¹P{¹H} at 193 K: -65.0 (s, w_{1/2} 200 Hz), -72.0 (s, w_{1/2} 260 Hz); ⁷Li{¹H} at 303 K: 1.0 (s, w_{1/2} 20 Hz); ⁷Li{¹H} at 193 K: -65.0 (s, w_{1/2} 200 Hz), -72.0 (s, w_{1/2} 260 Hz); ⁷Li{¹H} at 303 K: 1.0 (s, w_{1/2} 20 Hz); ⁷Li{¹H} at 193 K: -66.0 (s, w_{1/2} 30 Hz), ³¹P{¹H} at 193 K: -56.0 (s, w_{1/2} 30 Hz), -59.0 (s, w_{1/2} 20 Hz); ³¹P{¹H} at 303 K: -66.0 (s, w_{1/2} 250 Hz); ⁷Li{¹H} at 193 K: -56.0 (s, w_{1/2} 30 Hz), -59.0 (s, w_{1/2} 250 Hz); -68.0 (s, w_{1/2} 250 Hz); ⁷Li{¹H} at 303 K: 0.5 (s, w_{1/2} 15 Hz); ⁷Li{¹H} at 193 K: 2.3 (s, w_{1/2} 60 Hz) 0.2 (s, w_{1/2} 60 Hz). 4 (Benzene-d₆ at 303 K): ³¹P{¹H}: -23.4 (s, ¹J(³¹P-¹¹⁹Sn) 892, ¹J(³¹P-¹¹⁷Sn) 856 Hz); ¹¹⁹Sn{¹H}: 52.5 (t, ¹J(³¹P-¹¹⁹Sn) 640 Hz), -50.3 (¹J(³¹P-¹¹⁹Sn) 698 Hz); ¹¹⁹Sn{¹H}: -43.4* (¹J(³¹P-¹¹⁹Sn) 640 Hz), -50.3 (¹J(³¹P-¹¹⁹Sn) 698 Hz); ¹¹⁹Sn{¹H}: +64* (¹J(³¹P-¹¹⁹Sn) 639 Hz); +59.9 (¹J(³¹P-¹¹⁹Sn) 695 Hz); ¹H: 6.95 (m, ArH), 0.03 (s, Sn(CH₃)), 0.02* (s, Sn(CH₃)), -0.01 (s, Sn(CH₃)). 6 (Benzene-d₆ at 303 K): ³¹P{¹H}: -45.3, -45.9 ppm. Variable temperature data on A are complicated and will be reported later.